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Abstract
We propose a new fourth-order numerical method for solving the multi-
dimensional Kramers equation in standard and overdamped regimes. The
algorithm is developed for modelling the trajectories of airborne particles
propagating through porous media such as three-dimensional fibre networks.
It disentangles the deterministic and stochastic parts of the solution, so
that standard fourth-order numerical methods can be used to calculate the
deterministic component. The stochastic correction to the solution is obtained
using a perturbative expansion of the stochastic force. In the overdamped
regime, our method avoids the need for extremely small time steps required by
conventional methods. We compare the convergence rate of our algorithm to
that of other methods by solving the one-dimensional Duffing equation. The
proposed algorithm is finally used to evaluate the performance of various filters
made from fibres of two different sizes.

PACS numbers: 2.70, 05.40, 02.50

1. Introduction

A great number of physical problems involving interactions between a deterministic system
and a large, statistically described environment require solving stochastic differential equations
(SDEs). Effective and stable algorithms for solving such equations numerically are always
in demand and various second- and fourth-order numerical methods have been proposed
[1–10]. The particular problem considered here is the motion of airborne particles through
fibrous filters. Specifically, we need to construct the trajectories of a large number of airborne
particles of varying sizes and evaluate how the probability of capture of these particles changes
with the composition of the filter. We assume that the particles are spherical and non-
interacting, and we neglect any disturbance of the air flow field they may cause. Furthermore,
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for the particle sizes of interest (a few microns at most), the gravitational force is negligible
compared to the drag force exerted by the air flow. As a result, the only relevant forces acting
on the particles are the drag force and Brownian diffusion in the air flow. The motion of each
particle is then governed by a special type of SDEs called the Kramers equation [11]:

�̇x = �v, (1)

�̇v = γ ( �V − �v) + ��. (2)

These equations apply to many other phenomena such as stochastically driven oscillators
[12–15] and rectified Brownian motion in molecular and cell biology [16, 17]. In our case,
�x and �v denote the position and velocity of the particle’s centre of mass and �V (�x) is the
stationary air velocity at point �x. �V represents the drag force normalized to velocity units. ��
is a Langevin force and γ is a relaxation rate given by the expression γ = 3πdpμ/mCc, where
m and dp are the mass and diameter of the particle and μ is the viscosity of air. Cunninghman’s

slip correction to Stokes law is Cc = 1 + Kn

(
1.142 + 0.558 e− 0.999

Kn

)
, where Kn = 2λ/dp is the

Knudsen number and λ = 6.64×10−8 m is the mean free path of air molecules. The Langevin
force �� in equation (2) is a zero-mean Gaussian noise. Its correlation function reads

〈�i(t)�j (t
′)〉 = qδij δ(t − t ′), (3)

where q is the noise strength, which depends on the physical parameters of the particular
problem under consideration. In our case, q = 2kT

m
γ , where kT defines the thermal energy.

The parameter γ thus determines the intensity of both the drag force and the noise term. It
increases nonlinearly with decreasing particle diameter and can run across a large range of
values. As γ becomes large, existing explicit algorithms discussed below quickly become
inefficient as they require a time step �t such that the product γ�t remains below 1.

In this paper, we propose a unified multi-dimensional approach for solving the Kramers
equation for a wide range of γ values. In our algorithm, we disentangle the deterministic
and stochastic parts of the solution which allows us to use existing fourth-order numerical
methods for calculating the deterministic part. In the limit of large γ , we are therefore
able to use existing implicit schemes with adaptive step size control to find the deterministic
component of the solution at a given �t without reducing the time step to extremely small
values. At each iteration, we then calculate the stochastic correction to the deterministic
component. By focusing on the slowly varying component of the solution, we are able to
overcome the limitation γ�t < 1 and to achieve a significant improvement in convergence
at relatively large values of γ�t . For the problem of airborne particle diffusion, the method
allows us to efficiently construct the trajectories of particles ranging in size from several
nanometres to several microns.

The remainder of this paper is organized as follows. In the following section, we construct
two forms of the algorithm appropriate for the regular and overdamped regimes, respectively.
In section 3, we consider the one-dimensional Duffing equation and compare the convergence
of our algorithm to other methods. We then apply the algorithm to the study of airborne particles
propagating through a fibrous network (section 4). Specifically, we evaluate the efficiency
of model filters created by mixing fibres of two different sizes in different proportions and
compare our results to published data. Concluding remarks are provided in section 5.

2. Derivation of the algorithms

The formal solution to equations (1) and (2) is given by

�x(t + �t) = �x(t) +
∫ �t

0
�v(t + t ′) dt ′, (4)

2
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�v(t + �t) = �v(t) e−γ�t + γ

∫ �t

0
e−γ (�t−t ′) �V (�x(t + t ′)) dt ′ +

∫ �t

0
e−γ (�t−t ′) ��(t + t ′) dt ′. (5)

Both expressions have a nontrivial dependence on the stochastic component through the drag
force term �V (�x(t ′)

)
. The influence of the Langevin force can be represented as a correction

to the solution of the deterministic equation, i.e.

��x(�t) ≡ �x(t + �t) − �x(t) = ��xD + ��xS. (6)

In the above equation, the superscript D denotes the deterministic solution obtained by solving
equation (2) in the absence of the last term, and S denotes the stochastic correction due to the
Langevin force. A similar expression holds for ��v.

Assuming that the drag force �V (�x) is a smooth function of the coordinates, we can expand
it in a Taylor series with respect to the stochastic correction:

Vi(�x(t + �t)) = Vi(�x(t) + ��xD) + V
(α)
i �xS

α + 1
2V

(α,β)

i �xS
α�xS

β + · · · . (7)

Here, the superscripts α and β denote partial derivatives, while subscripts are used to identify
vector components. The rule of summation over repeated indices is assumed. Furthermore,
since all force derivatives are taken at point �x(t)+��xD , the solution can be decomposed into a
deterministic and a stochastic part. Substituting equation (7) into the solution for the velocity
equation (5) yields the following expressions for the velocity increments:

�vD
i = vi(t)(e

−γ�t − 1) + γ

∫ �t

0
e−γ (�t−t ′)Vi(�x(t) + ��xD(t ′)) dt ′,

�vS
i = Wi(�t, γ ) + γ

∫ �t

0
e−γ (�t−t ′)

[
V

(α)
i �xS

α (t ′) +
1

2
V

(α,β)

i �xS
α (t ′)�xS

β (t ′) + · · ·
]

dt ′. (8)

Substituting equations (8) into equation (4) we then obtain a general integral equation for the
stochastic increments of the coordinates:

�xS
i (�t) = W

[1]
i (�t, γ ) + γ

∫ �t

0
dt ′

∫ t ′

0
e−γ (t ′−t ′′)

×
[
V

(α)
i �xS

α (t ′′) +
1

2
V

(α,β)

i �xS
α (t ′′)�xS

β (t ′′) + · · ·
]

dt ′′. (9)

In the above equations, we introduced the functions

−→
W (�t, ω) =

∫ �t

0
e−ω(�t−t ′) ��(t + t ′) dt ′, (10)

−→
W

[1]
(�t, ω) =

∫ �t

0

−→
W (t ′, ω) dt ′ = −

−→
W (�t, ω) − −→

W (�t, 0)

ω
, (11)

which involve integrals of the Langevin force. The last equality in equation (11) is obtained
by integration by parts. The definition equation (11) can be generalized to an arbitrary number
of integrations, with the superscript in square brackets denoting that number. Some useful
properties of the W functions are derived in appendix A. Analysing equations (8) and (9)
in the limit of small time step �t we can immediately identify the stochastic lowest order
terms, which are given by W,W [1] for the velocity and coordinate, respectively. Also, since
the deterministic part of the solution does not depend on the stochastic terms, it can be found
using any appropriate numerical algorithm (implicit or explicit). In addition, as we saw
above, the stochastic increments ��xS and ��vS depend on the deterministic solution ��xD

implicitly through the derivatives of the drag force. It is also worth mentioning that because

3
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the drag force �V (�x(t)) depends on the fluctuating coordinates of the particle, the problem
equations (1) and (2) are different from standard coloured noise problems studied in [1–3].

We split each iteration in our algorithm into two steps. First, we solve the deterministic
equations, i.e. equations (1) and (2) without the Langevin force, taking the full stochastic
solution found at a previous moment of time vi(tn), xi(tn) as initial conditions. In result, we
obtain the deterministic component of the solution:

vD
i (tn+1) = vi(tn) + �vD

i (�t), xD
i (tn+1) = xi(tn) + �xD

i (�t). (12)

After that we substitute vD
i (tn+1), x

D
i (tn+1) into the derivatives of the drag force in equations (8)

and (9), and find �vS
i (�t) and �xS

i (�t). The latter are then used to construct a full stochastic
solution at time tn+1:

vi(tn+1) = vD
i (tn) + �vS

i (�t), xi(tn+1) = xD
i (tn) + �xS

i (�t). (13)

In some sense, this approach can be regarded as a semi-implicit stochastic method, because the
stochastic component of the solution at time step tn+1 depends on the deterministic component
at the same time step. We found that such an algorithm usually provides better convergence
than a fully explicit method based on substituting into V (α,β,...) the full solution found at tn,
i.e. vi(tn), xi(tn).

It is not difficult to verify that in the deterministic limit, equations (1) and (2) can become
stiff when the rate of change of the drag force V is very small compared with the relaxation
constant γ . To be more specific, in the one-dimensional case, the first Lyapunov exponent,
which is approximately equal to γ , may significantly differ from the other exponents if
∂xV/γ � 1. In addition, because the noise strength depends on γ , the stochastic part of the
problem can also result in a stiff equation [5]. Since the Langevin force �� behaves as

√
γ ,

the range of values of γ for which the stochastic and deterministic problems become stiff will
be slightly different. In what follows, however, we will ignore this difference. We start by
examining the non-stiff limit.

2.1. Non-stiff limit

If the relaxation time τrel = 1/γ is not too small compared to the characteristic time
scale determined by (∂xV )−1, we can choose the time step �t such that γ�t � 1. This
allows us to apply a standard explicit method for constructing the deterministic component
�xD

i of the solution. Here, we use a fourth-order adaptive Runge–Kutta algorithm. The
stochastic increments �xS

i (�t) and �vS
i (�t) are then obtained by solving equations (8) and

(9) iteratively. The order of the functions Wi and W
[1]
i appearing in these equations can be

found by analysing the correlation function equation (A.5). In the limit γ�t � 1, we find
Wi ∼ O(�t1/2) and W

[1]
i ∼ O(�t3/2). More generally, it follows from equation (A.2) that

W [n] ∼ O(�tn+1/2) and ∂k
γ W [n] ∼ O(�tn+k+1/2). In equation (9), all derivatives of the drag

force are taken at point xD
i (tn + t ′′), where t ′′ is the integration variable. Expanding these

derivatives in the vicinity of the point tn+1, we obtain

V
(α)
i (�xD(tn + t ′′)) � V

(α)
i − V

(α,β)

i vD
β (tn+1)

eγ (�t−t ′′) − 1

γ
, (14)

where we have used the fact that xD
i (tn+1 − τ) � xD

i (tn+1) − 1
γ
vD

i (tn+1)(eγ τ − 1), with τ =
�t − t ′′. In what follows, if not specified otherwise, all derivatives of the drag force are
taken at point xD

i (tn+1). We note that the right-hand side of equation (14) depends only on

4
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the deterministic solution at the moment of time tn+1. To fourth order in �t , the solution to
equation (9) then reads

�xS
i (�t) = W

[1]
i − V

(α)
i γ

∫ �t

0
dt ′

∫ t ′

0
e−γ (t ′−t ′′)W [1]

α (t ′′, γ ) dt ′′. (15)

Integrating the last term in that equation using the relation equation (A.3), we finally get

�xS
i (�t) = W

[1]
i − V

(α)
i γ ∂γ W [2]

α . (16)

The corresponding expression for �vS
i (�t) is obtained by substituting equations (14) and (16)

into the expansion for the velocity equation (8). Keeping terms up to the fourth order we find

�vS
i (�t) = Wi − V

(α)
i γ ∂γ W [1]

α − V
(α,β)

i vD
β (tn+1)

∫ �t

0
e−γ (�t−t ′)(eγ (�t−t ′′) − 1)W [1]

α (t ′, γ ) dt ′

+
γ

2
V

(α,β)

i G
[1]
α,β(�t, γ ), (17)

where we have introduced the matrix

G
[1]
α,β(�t, γ ) =

∫ �t

0
W [1]

α (t ′, γ )W
[1]
β (t ′, γ ) dt ′ (18)

corresponding to a non-Gaussian stochastic term of order O(�t4). Since the diagonal elements
of Ĝ[1] have a non-zero average, so has the stochastic correction to the velocity at the
fourth order. The third term on the right-hand side of equation (17) can be integrated using
equation (A.3). The stochastic correction to the velocity solution then takes the form:

�vS
i (�t) = Wi − V

(α)
i γ ∂γ W [1]

α + γV
(α,β)

i

[
vD

β (tn+1)∂γ W [2]
α + 1

2G
[1]
α,β

]
(19)

where we have used the relation
−→
W

[2]
+ ∂γ

−→
W

[1] = −γ ∂γ
−→
W

[2]
.

Equations (16) and (19) have the advantage of being easily implemented for problems in
multiple dimensions. As we demonstrate in the appendix, from a numerical point of view,
for each dimension, only four independent Gaussian variables are required to construct the
correlated Gaussian variables as well as a Gaussian approximation for the matrix Ĝ[1]. Such
a Gaussian approximation is the only contribution in the fourth order.

2.2. Stiff limit

When γ becomes very large compared to the rate of change of the drag force, the problem is
found to be stiff. Choosing a time step �t such that γ�t � 1, as required by the algorithm
developed in the previous section, can become prohibitively expensive numerically. On the
other hand, choosing a larger time step in order to reduce computational time can lead to large
errors in the solution. One of the main sources for such errors lies in the slow convergence
of the expansions constructed above, such as the Taylor series for the different exponents.
For example, an error of 10% or more is made by truncating the Taylor series of e−γ�t at
the fourth order term if γ�t > 1.3. We also note that the stochastic terms in the solution
behave differently in the limit of large γ , because the noise strength q increases with γ .
Using the correlation functions equation (A.5) we find, in that limit, Wi ∼ O(�t0) and
W

[1]
i ∼ O(�t1/2). This leads to the classical result for Brownian motion in the absence of an

external potential, i.e. 〈�v2〉 = 3
2kT /m and 〈�x2〉 = 6Dt , where D is the diffusion constant.

In order to rigorously investigate the stiff limit, we formally assume that τrel ∼
O(ε2),�t ∼ O(ε) and study equations (1) and (2) with respect to the new small parameter
ε. Were the order of τrel even higher, the accuracy of the estimates provided below would
only improve. We start by identifying the order of the different random Gaussian variables in

5
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the problem. Using equations (A.4), it is easy to show that W(�, γ ) ∼ O(ε0),W(�, 0) ∼
O(ε−1/2), and each derivative of W(�, γ ) with respect to γ taken at the point γ = 0 increases
its order in ε by 1. Here, we took into account that q ∼ ε−2. Hence, the lowest order
term in equation (A.2) is proportional to 1

γ
(∂γ )n−1W(�t, γ )|γ=0 ∼ O(εn+1/2) and therefore

W [n] ∼ O(εn+1/2).
We then note that since γ�t ∼ O(1/ε), the exponent e−γ�t is of higher order than any

power of ε. As a result, we can neglect all terms proportional to that exponent in the final
expressions. Furthermore, in the leading order of ε, the kernel γ e−γ (t ′−t ′′) in the integral
equations (8) and (9) can be replaced by δ(t ′ − t ′′). It is not difficult to verify that in order
to construct a stochastic solution valid to fourth order in ε, we need an expression for ��xD

which is valid to second order only. Such an expression can be obtained by first rewriting
equation (2) as

vD
i (tn+1 − τ) = Vi

(
xD

i (tn+1 − τ)
)

+
1

γ

d

dτ
vD

i(tn+1 − τ).

Iterating the latter we obtain for the coordinate, in the second order:

xD
i (tn+1 − τ) � xD

i (tn+1) − Viτ − 1

γ

[
Vi − vD

i (tn+1)
]

+ V
(α)
i Vα

τ 2

2
. (20)

Note that the last two terms in equation (20) are of the same order with respect to ε. Following
the procedure described in the previous section and expanding the derivatives of the drag force
in equation (9), we obtain, in the fourth order,

�xS
i (�t) = W

[1]
i − V

(α)
i γ ∂γ W [2]

α + V
(α,β)

i Vαγ ∂γ W
[3]
β + V

(α)
i V (β)

α

γ 2

2
∂2
γ W

[3]
β +

1

2
V

(α,β)

i G
[1]
α,β .

(21)

Note that in the limit of small relaxation time, the fourth-order stochastic correction to the
coordinate solution has a nonzero average due to the presence of the matrix Ĝ[1]. The term
causing such a drift is proportional to the second derivative of the drag force. We can estimate
the leading order in the drift term:

〈
G[1]

α,α(�t, γ )
〉 � q�t2

2γ 2
.

It is indeed of the fourth order with respect to ε.
Following the same line of analysis we can calculate the stochastic part of the velocity

solution. Expanding the derivatives of the drag force and keeping only important terms we
find

�vS
i (�t) = Wi + γV

(α)
i

∫ �t

0
e−γ (�t−t ′)�xS

α (t ′) dt ′

− γV
(α,β)

i

∫ �t

0
e−γ (�t−t ′)

[
(�t − t ′)Vα +

Vα − vD
α

γ

]
�xS

β (t ′) dt ′

+
1

2
V

(α,β)

i

∫ �t

0
e−γ (�t−t ′)�xS

α (t ′)�xS
β (t ′) dt ′. (22)

We can neglect the last term in equation (20), which is proportional to (�t − t ′)2, because it
disappears after the integration due to γ e−γ (�t−t ′) ∼ δ(�t − t ′). Substituting equation (21)
into (22) we obtain the stochastic correction:

6
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0 0.1 0.2 0.3 0.4
−0.775

−0.774

−0.773

−0.772

−0.771

<
E

>

Δ t

Figure 1. The convergence of various fourth-order algorithms for solving the Duffing model. The
average energy 〈E〉 is calculated at a finite time t = 6 ( m

kT
= 5 and γ = 1). Initial position and

velocity were set to zero in this and following calculations. The average energy is calculated on
a sample of 2 × 108 trajectories. Diamonds: Hershkowitz’s algorithm [7]. Circles: the algorithm
described in section 2. Crosses: Drozdov and Brey’s algorithm described in equations (38)–(42)
of paper [9].

�vS
i (�t) = Wi − γ

[(
V

(α)
i − V

(α,β)

i

Vβ − vD
β

γ

)
∂γ +

1

2
V

(α,β)

i Vβ∂2
γ

]
W [1]

α + V
(α)
i V (β)

α

γ 2

2
∂2
γ W

[2]
β

−V
(α)
i

[
V (β,κ)

α Vβ

γ 2

2
∂2
γ + V (β)

α V
(κ)
β

γ 3

6
∂3
γ

]
W [3]

κ + NGi . (23)

The last term describes a non-Gaussian contribution to the solution and it reads

NGi = 1

2
V

(α)
i V (β,κ)

α G
[1]
β,κ + γ 2V

(α,β)

i V (κ)
α ∂γ W

[1]
β ∂γ W [2]

κ

− γ

2
V

(α,β)

i

[
W [1]

α ∂γ W
[1]
β + ∂γ Wα∂γ W

[1]
β − ∂γ Wα∂γ Wβ

]
.

3. One-dimensional Duffing equation

In order to compare different numerical methods for solving SDEs in asymptotic or stiff
regimes, a simple, one-dimensional model is often utilized. The model, called the Duffing
oscillator [12], describes a nonlinear oscillator with bistable potential

U(x) = x4 − 2x2, V (x) = −∂xU(x) = −4(x3 − x). (24)

Different approaches have been proposed to tackle this problem numerically. The most
straightforward method, based on an expansion in γ�t � 1, is provided in [7]. Another
numerical approach that is based on operator expansion of the evolution operator, demonstrated
much better converges in the limit γ�t � 1 [8–10]. Our semi-implicit method described in
section 2.1 is compared to Hershkovitz’s and Drozdov and Brey’s algorithms in figure 1 which
shows how the average energy of the system at time t = 6 (see [10]) depends on the time step
for a relaxation rate γ = 1. The figure shows that the average energy converges to the correct

7
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10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Δt

|ε|

Figure 2. The relative error ε = [〈E〉 − E0]/E0 as a function of time step. Circles: average
energy calculated using the algorithm described in section 2. The fitted line has slope n = 3.9.

value E0 = −0.77272 faster with the algorithm developed in section 2.1 (circles, in the figure)
than with the method of paper [7]. The best performance in terms of convergence is obtained
with the algorithm due to Drozdov and Brey. The order of convergence of our algorithm is
demonstrated on the log–log plot shown in figure 2. A linear fit gives a slope equal to 3.9,
confirming the fourth-order dependence of the error on the time step.

The advantage of our approach is readily observed in the overdamped regime. In the
regime of large γ , the algorithm of section 2.2 provides significantly better convergence than
other methods, thus allowing a large increase in the algorithm’s time step (see figure 3). As
can be seen from figure 3, the performance of Drozdov and Brey’s algorithm deteriorates with
increasing γ and the error ε grows exponentially as γ�t becomes larger than 1 (dotted lines
in the figure). By contrast, the algorithm developed in section 3 exhibits much more stability
with respect to the magnitude of the time step (solid lines). It is also important to note that, at
fixed time step �t and with increasing γ , the latter only improves in convergence whereas the
other algorithms diverge even faster.

4. Motion of airborne particles through random fibre networks

We now turn to the problem of predicting the filtration efficiency of random fibre networks.
The model filters consist of fibres of diameters 1 and 4 μm mixed together in different
proportions. These fibre diameters were chosen in order to facilitate comparisons with the
experimental work of Browne and Thorpe [18], who evaluated filters made from glass fibres
of similar dimensions. Our simulated filters were created using a model originally proposed to
predict the structure of paper and how it deforms under compressive forces [19]. Five different
structures were created, corresponding to five different values for the weight fraction of the
large fibres f4 (0.1, 0.3, 0.5, 0.7 and 0.9). The filter generated in the case f4 = 0.7 is shown
in the inset of figure 4. That particular network consists of 24 fibres of diameter df = 4 μm
and 192 fibres of diameter df = 1 μm contained in a simulation domain of size 40 × 40 μm2,

8



J. Phys. A: Math. Theor. 42 (2009) 315002 I Vadeiko and F Drolet

0 0.5 1 1.5 2 2.5 3
0
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|ε|

Figure 3. The relative error ε = [〈E〉 − E0]/E0 of Duffing oscillator solution in the overdamped
limit. The average energy 〈E〉 is calculated at a finite time of t = 12 with m

kT
= 5 and initial position

and velocity set to zero. The value E0 is taken as 〈E〉 calculated at �t = 0.03. The algorithm
of section 2 corresponds to solid lines and the algorithm of Drozdov and Brey is represented by
dotted lines. Squares: γ = 25, circles: γ = 50, asterisks: γ = 100.

Figure 4. Filtration efficiency of three different filters with bimodal fibre size distribution. The
face velocity was set to 10 cm s−1 in all cases. The inset shows the simulated filter structure
corresponding to a long fibre weight fraction f4 = 0.7.

discretized at a resolution dx = 62.5 nm. The porosity of that structure as well as that of all
others in the study was set to 85%.

Before computing trajectories of airborne particles moving through our model structures,
the flow field V (�x) appearing in equation (2) must be calculated. Here that step was performed
using a Lattice–Boltzmann method [20]. As an example, discretization of the fibre network
shown in figure 4 required 794 × 640 × 640 nodes. The pressure drop �P applied across
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the thickness of the filter was adjusted so that the velocity of air as it approaches the filter is
10 cm s−1.

Having the three-dimensional velocity profile �V (�x), we can now construct particle
trajectories using equation (2). The particles are initially distributed along a plane located
upstream from the filter and perpendicular to the flow. We assume that the initial velocity
of the particles coincides with the air flow velocity, i.e. �v0 = �V ( �x0). In the calculation,
the deterministic component of the solution is obtained using either an adaptive fourth-order
Runge–Kutta algorithm when γ is small (large particle) or an implicit algorithm also with
adaptive step size control in the case of large γ (small particle). In addition to being more
efficient, the implicit algorithm avoids accumulating large errors in interpolating �V (�x) between
neighbouring nodes on the lattice. If the time step of the algorithm becomes too small, the
accumulated interpolation error can exceed that from the algorithm itself. The stochastic
components of the solution are obtained using equations (16), (19) and (21), (23), respectively.
The calculation proceeds until the particle is either captured or exits from the other side of the
filter. A particle is assumed to be captured when the distance between its centre of mass and
the closest fibre in the network becomes less than the particle’s radius. The filtration efficiency
at a given particle size is obtained by repeating the calculation for a large number of particles
starting from different initial positions.

Figure 4 shows the efficiency curves obtained for three of our structures and for airborne
particle sizes varying between 50 nm and 1 μ m in size. All three curves exhibit a minimum
at an airborne particle size around 200 nm which is typical of fibrous filters. In the region to
the left of this minimum, capture occurs mostly through Brownian diffusion while to the right,
the dominant mechanisms are interception and, for larger particles, inertial impaction. The
filtration efficiency increases as the fraction of large fibres in the mixture decreases and so does
the pressure drop required to achieve a flow velocity of 10 cm s−1. Our results also show that
the minimum in the curve moves to the left and becomes sharper as f4 decreases. All of these
trends agree with the experimental observations of Browne and Thorpe who obtained similar
curves for filter samples made from a binary mixture of glass fibres. A more detailed account
of our study as well as of its implications for filter design optimization will be presented
elsewhere.

5. Concluding remarks

We have proposed two fourth-order numerical algorithms for solving SDEs in different
regimes. These algorithms have a very general form and can be applied to solving multi-
variable problems without any further modification of the algorithms themselves. We have
demonstrated that in the standard non-stiff limit, the semi-implicit algorithm of section 2
has a convergence rate comparable to that of other existing methods [9]. In the stiff limit
where standard approaches do not work well, the algorithm of section 3 exhibits excellent
convergence with respect to the time step �t . The method is very stable in the region of
parameters where other available approaches usually fail.

Both stiff and non-stiff algorithms are called semi-implicit, because the stochastic
component of the solution at the time step tn+1 formally depends on the deterministic
component at the same time step. The deterministic component can be calculated using
any numerical method considered appropriate for a particular problem. The stochastic part of
the solution requires evaluation of up to third-order partial derivatives of the potential, as many
other fourth-order algorithms for solving Langevin equations of this type would. Therefore,
for multi-dimensional problems, solving the corresponding Fokker–Planck equation could be
more convenient in some cases.
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The stochastic method that we developed is based on W -functions and does not depend
on a particular form of the noise. Therefore, it can also be applied to problems with Ornstein–
Uhlenbeck or other types of non-white noise. One would only need to recalculate the
correlation coefficient Ci,j (ω, ω′) defined in equation (A.4).
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Appendix A. Algebra of W functions

In equations (10) and (11) we defined two Gaussian variables. We can generalize the definition
to the case of multiple integrals:

−→
W

[n]
(�t, ω) =

∫ �t

0

�W [n−1](τ ′, ω) dτ ′ = −
−→
W

[n−1]
(�t, ω) − −→

W
[n−1]

(�t, 0)

ω
. (A.1)

It is not difficult to show that

−→
W

[n]
(�t, ω) = 1

(−ω)n

[
−→
W (�t, ω) −

n−1∑
k=0

ωk

k!
∂k
ω

−→
W (�t, ω)|ω=0

]
, (A.2)

We can also generalize the relation equation (11) as follows:

∫ �t

0
e−ω′(�t−t ′)−→W [n]

(t ′, ω) dt ′ = −
−→
W

[n]
(�t, ω) − −→

W
[n]

(�t, ω′)
(ω − ω′)

. (A.3)

Indeed, for
−→
W function equation (A.3) can be verified directly. The higher order relations are

proved based on equation (A.1) and using the recurrent method. If ω′ = ω we obtain a simple
integro-differential relation, which greatly simplifies integral expressions in the stochastic
solution.

We note that all �W [n] are correlated. The correlation function of
−→
W reads

Ci,j (ω, ω′) ≡ 〈Wi(�t, ω)Wj(�t, ω′)〉 = q

ω + ω′ (1 − e−(ω+ω′)�t ) δij . (A.4)

Using the relation equation (A.2) and performing simple algebra one can easily confirm [2]

〈Wi(�t, γ )Wj (�t, γ )〉 = q

2γ
(1 − e−2γ�t )δij ,

〈
Wi(�t, γ )W

[1]
j (�t, γ )

〉 = q

2γ 2
(1 − e−γ�t )2δij , (A.5)

〈
W

[1]
i (�t, γ )W

[1]
j (�t, γ )

〉 = q

2γ 3
(2γ�t − 3 − e−2γ�t + 4 e−γ�t ) δij .

Using the correlation function equation (A.4) and the expansion equation (A.1), it is not
difficult to find higher order correlation functions

〈
W

[n]
i (�t, ω)W

[k]
j (�t, ω′)

〉
, because the

differentiation with respect to ω commutes with the averaging procedure.
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Appendix B. Gaussian representation of W functions

As we demonstrated in this paper, in order to construct a stochastic solution of equations (1)
and (2) we need from four to six Gaussian variables for each dimension depending on the
type of the problem. In the non-stiff case, those are Wi,W

[1]
i , ∂γ W

[1]
i , ∂γ W

[2]
i . For calculating

correlation functions of different variables it is more convenient to choose a different basis
Wi,W

[1]
i , ∂γ Wi,W

[2]
i . As we demonstrate below, in the stiff case we need to add only two

more variables W
[3]
i , ∂2

γ Wi . The derivatives of higher order W functions that are involved
in the computation of the solution equations (16) and (19) can be constructed from a simple
relation (see equation (A.1)):

γ ∂γ W
[n]
i = −W

[n]
i − ∂γ W

[n−1]
i . (B.1)

Hence, we obtain

γ ∂γ W
[1]
i = −W

[1]
i − ∂γ Wi, γ ∂γ W

[2]
i = −W

[2]
i +

1

γ
W

[1]
i +

1

γ
∂γ Wi. (B.2)

For the stiff problem solution equations (21) and (23) we are interested in the terms up to ε4

and therefore, some expressions greatly simplify:

γ 2

2
∂2
γ W

[1]
i = W

[1]
i + ∂γ Wi − γ

2
∂2
γ Wi,

γ 2

2
∂2
γ W

[2]
i = W

[2]
i − 2

γ
W

[1]
i +

1

2
∂2
γ Wi,

γ ∂γ W
[3]
i = −W

[3]
i + O

(
ε4 1

2
)
,

γ 2

2
∂2
γ W

[3]
i = W

[3]
i + O

(
ε4 1

2
)
,

γ 3

6
∂2
γ W

[3]
i = −W

[3]
i + O

(
ε4 1

2
)
.

Hence, the more complex implicit solution can be simplified and written in a compact form:

�xS
i (�t) = W

[1]
i − V

(α)
i γ ∂γ W [2]

α +
(
V

(α)
i V (β)

α − V
(α,β)

i Vα

)
W

[3]
β +

1

2
V

(α,β)

i G
[1]
α,β,

�vS
i (�t) = Wi − γ

[(
V

(α)
i − V

(α,β)

i

Vβ − vD
β

γ

)
∂γ +

1

2
V

(α,β)

i Vβ∂2
γ

]
W [1]

α

+ V
(α)
i V (β)

α

γ 2

2
∂2
γ W

[2]
β + V

(α)
i

[
V (β)

α V
(κ)
β − V (β,κ)

α Vβ

]
W [3]

κ + NGi .

Below we reduce the notations to a one-dimensional case and drop the index of dimension
in W functions. A generalization to an arbitrary number of dimensions is straightforward. We
will start from the non-stiff limit. Four basis Gaussian variables W,W [1], ∂γ W,W [2] can be
represented as linear combinations of four normally distributed variables Ym,m = 0, . . . , 3
with zero average and standard deviation equal 1. Starting from the lowest order function
W = √

C(γ, γ )Y0, and using equations (A.2), (A.4) we can construct the linear combinations
as follows:

W [1] =
1∑

m=0

Am(W [1])Ym,A0(W
[1]) = 〈WW [1]〉√

C(γ, γ )
,

A1(W
[1]) =

√
〈W [1]W [1]〉 − A0(W [1])2,

∂γ W =
2∑

m=0

Am(∂γ W)Ym,A0(∂γ W) = 〈W∂γ W 〉√
C(γ, γ )

,
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A1(∂γ W) = 〈W [1]∂γ W 〉 − A0(W
[1])A0(∂γ W)

A1(W [1])
,

A2(∂γ W) =
√

〈∂γ W∂γ W 〉 − A0(∂γ W)2 − A1(∂γ W)2,

W [2] =
3∑

m=0

Am(W [2])Ym,A0(W
[2]) = 〈WW [2]〉√

C(γ, γ )
, . . . . (B.3)

We note that the calculation of the coefficients Am is very straightforward, because all
correlation functions can be calculated using C(ω,ω′) or its derivatives with respect to one of
the arguments.

It follows from the definition equation (18) that the non-Gaussian variable G[1] is of order
�t4 in the non-stiff limit or ε4 in the stiff limit. Therefore, any non-Gaussian corrections to
a Gaussian approximation can be ignored due to their higher order. In the non-stiff limit, the
four variables Ym are sufficient. Indeed, in the leading order two variables W [1] and ∂γ W are

identical (see equation (B.2)). We can also ignore the correlation function with
〈(
∂2
γ W

)2〉
and

〈(W [2])2〉, because they are of order �t5. So, the non-Gaussian variable approximately reads

G[1] = q�t4

2

[
P̄ + P0Y

2
0 + P01Y0Y1 + P1Y

2
1 + P02Y0Y2 + P12Y1Y2 + P2Y

2
2

]
. (B.4)

Here,

P̄ = 1

210
− 1

140

√
33

2
, P0 = 1

10
, P01 = 4

15
√

3
, P1 = 13

210
,

P02 = 1

21
√

5
, P12 = 1

12
√

15
, P2 = 1

140

√
33

2
.

The first term is responsible for the nonzero average of G[1] itself and each
〈
Y 2

m

〉 = 1, whereas
the last term insures a correct second moment 〈(G[1])2〉. In the stiff limit we add two more
basis elements W

[3]
i , ∂2

γ Wi , which are constructed using two additional normalized variables
Y4, Y5 following the form of equation (B.3). In terms of ε the order of the basis variables(
W,W [1], ∂γ W,W [2],W

[3]
i , ∂2

γ Wi

)
is

(
0, 3

2 , 2, 5
2 , 7

2 , 4
)
, accordingly. The form of the non-

Gaussian variable is again simplified if we neglect terms of order higher than ε4. It reads

G[1] = q�t2

2γ 2

[
P̄ + P0Y

2
0 + P01Y0Y1 + P1Y

2
1 + P02Y0Y2 + P12Y1Y2

+ P2Y
2
2 + P03Y0Y3 + P13Y1Y3 + P04Y0Y4 + P05Y0Y5 + P3Y

2
3

]
. (B.5)

The last term insures a correct value of the second moment. Values of the constants P are
different from those of the non-stiff case and can be easily calculated.
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